Queue
queue theory
-
performance evaluation
- λ average arrival rate, packets per second
- μ average service rate, packets servered per second
- c number of servers
- ρ=λ/cμ traffic congestion in servers
- if >1 averge exceeds service capability
- if = 1 randomness prevents queue from emptying
- pn is probability of a particular number n customers in the system
- expected number in system: L=∑(npn)
- expected number in queue: L=∑n=c+1((n−c)pn)
- time : T=Tq+S time in queue + service time
- little law
- W=E[T]Wq=E[Tq] mean waiting time in system
- L=λW
- E[T]=E[Tq]+E[S] to get W=Wq+1/μ
- expected servered people: E[Ns]=L−Lq=λ(W−Wq)=λ(1/μ)=λ/μ
- c=1,r=ρ,L−Lq=∑n=1np−∑n=1(n−1)p=∑n=1pn=1−p0=ρ
- busy probability
- for G/G/c system, E[Ns]=r
- Pb=ρ one server being busy brobability
- ...
-
rate transition diagrams
- a type of continuous-time Markov chain
- (λn+μn)pn=(λn−1+μn−1)pn−1+(λn+1+μn+1)pn+1
- $p_3 = \frac{\lambda_2 \lambda_1 \lambda_0}{\mu_3 \mu_2 \mu_1} p_0 $
- pn=∏i=1nμiλi−1
-
M/M/1 system
- Exponentially distributed
- interarrival time TI(t)=λe−λt
- service time TI(t)=μe−μt
- if all μ and λ equal get pn=p0(μλ)n
- p0=1−ρ - > pn=(1−ρ)ρn