Graphsearch
BFS
def BFS(self, s):
# Mark all the vertices as not visited
visited = [False] * (max(self.graph) + 1)
# Create a queue for BFS
queue = []
# Mark the source node as
# visited and enqueue it
queue.append(s)
visited[s] = True
while queue:
# Dequeue a vertex from
# queue and print it
s = queue.pop(0)
print (s, end = " ")
# Get all adjacent vertices of the
# dequeued vertex s. If a adjacent
# has not been visited, then mark it
# visited and enqueue it
for i in self.graph[s]:
if visited[i] == False:
queue.append(i)
visited[i] = True
DFS
def DFSUtil(self, v, visited):
# Mark the current node as visited
# and print it
visited.add(v)
print(v, end=' ')
# Recur for all the vertices
# adjacent to this vertex
for neighbour in self.graph[v]:
if neighbour not in visited:
self.DFSUtil(neighbour, visited)
# The function to do DFS traversal. It uses
# recursive DFSUtil()
def DFS(self, v):
# Create a set to store visited vertices
visited = set()
# Call the recursive helper function
# to print DFS traversal
self.DFSUtil(v, visited)
最短路径算法
单点最短路径算法: bellman-ford 算法,基本思路就是每次更新从起点到v的距离,如果起点到u再到v的路程短,那么就更新。
for i from 1 to size(vertices)-1:
for each edge (u, v) with weight w in edges:
if distance[u] + w < distance[v]:
distance[v] := distance[u] + w
Dijkstra’s 算法,这也是单点最短路径算法,基本思路是每次从q中取最小的节点,之后更新从该点到其他的点的距离。
function Dijkstra(G, w, s)
for each vertex v in V[G] // 初始化
d[v] := infinity // 將各點的已知最短距離先設成無窮大
d[s] := 0 // 因为出发点到出发点间不需移动任何距离,所以可以直接将s到s的最小距离设为0
S := empty set
Q := set of all vertices
while Q is not an empty set // Dijkstra演算法主體
u := Extract_Min(Q)
S.append(u)
for each edge outgoing from u as (u,v)
if d[v] > d[u] + w(u,v) // 拓展边(u,v)。w(u,v)为从u到v的路径长度。
d[v] := d[u] + w(u,v) // 更新路径长度到更小的那个和值。
A*
Backlinks